2 research outputs found

    An examination of quantitative methods for Forensic Signature Analysis and the admissibility of signature verification system as legal evidence.

    Get PDF
    The experiments described in this thesis deal with handwriting characteristics which are involved in the production of forged and genuine signatures and complexity of signatures. The objectives of this study were (1) to provide su?cient details on which of the signature characteristics are easier to forge, (2) to investigate the capabilities of the signature complexity formula given by Found et al. based on a different signature database provided by University of Kent. This database includes the writing movements of 10 writers producing their genuine signature and of 140 writers forging these sample signatures. Using the 150 genuine signatures without constrictions of the Kent’s database an evaluation of the complexity formula suggested in Found et al took place divided the signature in three categories low, medium and high graphical complexity. The results of the formula implementation were compared with the opinions of three leading professional forensic document examiners employed by Key Forensics in the UK. The analysis of data for Study I reveals that there is not ample evidence that high quality forgeries are possible after training. In addition, a closer view of the kinematics of the forging writers is responsible for our main conclusion, that forged signatures are widely different from genuine especially in the kinematic domain. From all the parameters used in this study 11 out of 15 experienced significant changes when the comparison of the two groups (genuine versus forged signature) took place and gave a clear picture of which parameters can assist forensic document examiners and can be used by them to examine the signatures forgeries. The movements of the majority of forgers are signi?cantly slower than those of authentic writers. It is also clearly recognizable that the majority of forgers perform higher levels of pressure when trying to forge the genuine signature. The results of Study II although limited and not entirely consistent with the study of Found that proposed this model, indicate that the model can provide valuable objective evidence (regarding complex signatures) in the forensic environment and justify its further investigation but more work is need to be done in order to use this type of models in the court of law. The model was able to predict correctly only 53% of the FDEs opinion regarding the complexity of the signatures. Apart from the above investigations in this study there will be also a reference at the debate which has started in recent years that is challenging the validity of forensic handwriting experts’ skills and at the effort which has begun by interested parties of this sector to validate and standardise the field of forensic handwriting examination and a discussion started. This effort reveals that forensic document analysis field meets all factors which were set by Daubert ruling in terms of theory proven, education, training, certification, falsifiability, error rate, peer review and publication, general acceptance. However innovative methods are needed for the development of forensic document analysis discipline. Most modern and effective solution in order to prevent observational and emotional bias would be the development of an automated handwriting or signature analysis system. This system will have many advantages in real cases scenario. In addition the significant role of computer-assisted handwriting analysis in the daily work of forensic document examiners (FDE) or the judicial system is in agreement with the assessment of the National Research Council of United States that “the scientific basis for handwriting comparison needs to be strengthened”, however it seems that further research is required in order to be able these systems to reach the accomplishment point of this objective and overcome legal obstacles presented in this study

    A New Approach to Automatic Signature Complexity Assessment

    Get PDF
    Understanding signature complexity has been shown to be a crucial facet for both forensic and biometric appbcations. The signature complexity can be defined as the difficulty that forgers have when imitating the dynamics (constructional aspects) of other users signatures. Knowledge of complexity along with others facets such stability and signature length can lead to more robust and secure automatic signature verification systems. The work presented in this paper investigates the creation of a novel mathematical model for the automatic assessment of the signature complexity, analysing a wider set of dynamic signature features and also incorporating a new layer of detail, investigating the complexity of individual signature strokes. To demonstrate the effectiveness of the model this work will attempt to reproduce the signature complexity assessment made by experienced FDEs on a dataset of 150 signature samples
    corecore